Assessing the Teaching and Learning of Science ### ACHIEVINGTHEVISION Desired Student Outcomes ### OBJECTIVES - Provide a insight into assessment considerations from the classroom level to the state overview (and beyond) - Address policy considerations (including educator effectiveness, school ranking, and selection of appropriate assessment instruments) that are impacted by science assessment. - Highlight strategies that will aid in transition to more appropriate student outcomes in science. ### WHERE ARE WE TODAY? ### Statewide Proficiency in Science ### STATE ASSESSMENTS - Spring Testing for Grades 4, 7, and 11 - Testing during the online assessment window - Highlight strategies that will aid in transition to more appropriate student outcomes in science. ## SCIENCE ASSESSMENT TIMELINE ## STATE ASSESSMENT OUTCOMES | | State Policy | ISDs, MSCs, &
Other Supports | LEAs and
Educators | Students and
Parents | |----------------------------------|---|--|---|---| | Immediate
outcomes | Accountability Identify needs for support or policy change | Identify needs
for professional
learning support Programming | Educator eval. Instructional
transitions Professional
learning priorities | Identification of
target areas for
improvement Considerations
for learning plans | | Annual /
Biannual
outcomes | Policy implementation over time Ongoing accountability | AccountabilityProgrammingConsiderations
for partnership | AccountabilityEducator effectivenessProgramming/ policy | Promote needs of career and college readiness Curriculum decisions | | Long Term
outcomes | Policy outcomes MI Merit Curriculum Impact on business / higher education | Accountability of support providers Programming Policy efforts | Accountability Identify needs for support or policy change | Career and college readiness Awareness of scientific literacy considerations | ## LOCAL AND REGIONAL ASSESSMENTS FOR SCIENCE ### 2013-2014 Chemistry First Quarter POST TEST » Form A (Master Copy) » Teacher Version Directions: Please choose the best answer choice for each of the following questions. Four students perform flame tests in a laboratory. The table below summarizes their experimental findings. Which student's flame has the highest energy? ### Flame Test Results | Student Name | Color Emitted | | |--------------|---------------|--| | Thomas | red | | | Anna | green | | | Cecilia | yellow | | | Devin | blue | | - A. Thomas - B. Anna - C. Cecilia - D. Devin ### Answer Choice Rationale - A. No rationale available - B. No rationale available - C. No rationale available - D. Correct ItemID gwicks.1001 Correct D Standard(s) SCI.9-12.C2.4a - 2. The visible emission spectrum of hydrogen shows only four wavelengths. Which of the following best explains this observation? - Hydrogen atoms have four orbitals. - B. Hydrogen atoms have four electrons. - Hydrogen atoms have quantized electron energy levels. - Hydrogen atoms have continuous electron energy levels. ### Answer Choice Rationale - A. No rationale available - B. No rationale available - C. Correct D. No rationale available ItemID gwicks.1006 Correct C Standard(s) SCI.9-12.C2.4c - A subatomic particle has no charge and a mass of 1 amu, and is located inside the nucleus of an atom. What is the identity of this particle? (1 atomic mass unit [amu] is 1/12 the mass of a carbon-12 atom.) - A. proton - B. neutron - C. electron - D. ion ### **Answer Choice Rationale** - A. No rationale available - B. Correct - C. No rationale available - D. No rationale available ItemID gwicks.1081 Correct B Standard(s) SCI.9-12.C4.8A - Which element is represented by the electron configuration 1s²2s²2p⁶3s²3p³? - carbon - B. silicon - C. phosphorus - D. magnesium ### Answer Choice Rationale - A. No rationale available - R No rationale available - C. Correct - D. No rationale available ItemID gwicks.1084 Correct C Standard(s) SCI.9-12.C4.8e ### An example support system: - Common pre/post or interim and summative assessments for a region - Utilizes local / regional data management tools - This becomes the norm to guide supports around... - School improvement - Professional learning - Supports and resources ## LOCAL AND REGIONAL ASSESSMENTS FOR SCIENCE ## LOCAL AND REGIONAL ASSESSMENT OUTCOMES # CLASSROOM AND SCHOOL ASSESSMENTS FOR SCIENCE Rubrics are used to guide educators toward quality assessment of student understanding (from artifacts) and appropriate instructional response Claim: I claim that when introduced to the xenopus tadpole, these painkillers will most likely make the heart rate go up, or it will stay the same, but rarely go down. Evidence: Almost all of my trials support my claim; they all either stayed the same, or went up. For the example 24/30 trials either went up or stayed the same, and the average of all the trials is 87.2 in water, and 91.8 when the painkiller is introduced. Reasoning: I did ten trials for each type of medicine, so my investigation was a fair test, and I looked for all potential sources of error, and if there was one, I restarted, so I am strongly confident in my investigation. I had also known from second hand research that these medicines had no known stimulants or depressants, so it wouldn't make much of a difference. ## CLASSROOM AND SCHOOL ASSESSMENTS FOR SCIENCE Common local assessments Analysis of student artifacts Performance assessment ## CLASSROOM AND SCHOOL ASSESSMENT OUTCOMES | | Common
Assessments | Analysis of Student
Artifacts | Performance
Assessment | |----------------------------------|---|---|--| | Immediate
outcomes | Curriculum coverageAddress general misunderstandings | Coherence among staff and classes Address individual misunderstandings | Probe for depth of understanding Address student misunderstandings | | Annual /
Biannual
outcomes | Curric. alignment Student learning objectives for teacher evaluation | Depth of
understanding Student learning
objectives for
teacher evaluation | Instructional change
for depth of
understanding Student interest /
motivation | | Long Term
outcomes | Student growth/
improvement over
time School improvement | Individual student
growth Student learning
objectives for
teacher evaluation | Authenticity of work Greater depth of
understanding Peer evaluation | ### ACHIEVINGTHEVISION Desired Student Outcomes ### CONTACTS Venessa Keesler Deputy Superintendent keeslerv@michigan.gov Andrew Middlestead Director, OSA middlesteada@michigan.gov Linda Forward Director, OEII forwardl@michigan.gov Stephen Best Assistant Director; OEII bests1@michigan.gov